Tetrahedron Letters 50 (2009) 4221–4224

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Lycopladines F and G, new $C_{16}N_2$ -type alkaloids with an additional C_4N unit from Lycopodium complanatum

Kan'ichiro Ishiuchi ^a, Takaaki Kubota ^a, Shigeki Hayashi ^b, Toshiro Shibata ^b, Jun'ichi Kobayashi ^{a,}*

^a Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan ^b Hokkaido Division, Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, Nayoro 096-0065, Japan

article info

Article history: Received 17 March 2009 Revised 14 April 2009 Accepted 23 April 2009 Available online 9 May 2009

Keywords: Lycopodium alkaloids Lycopodium complanatum Lycopladines F and G

ABSTRACT

Two new Lycopodium alkaloids, lycopladines $F(1)$ and G(2), have been isolated from the club moss Lycopodium complanatum, and the structures and relative stereochemistries of 1 and 2 were elucidated on the basis of spectroscopic data. Lycopladine F (1) is a rare $C_{16}N_2$ -type Lycopodium alkaloid possessing an amino acid residue (C_4N) .

- 2009 Elsevier Ltd. All rights reserved.

Club moss (Lycopodiaceae) is known to be a rich source of Lyco p odium alkaloids¹ possessing unique heterocyclic ring systems such as $C_{16}N$, $C_{16}N_2$, and $C_{27}N_3$, which have attracted great interest from biogenetic², synthetic³, and biological⁴ points of view. In our continuing efforts to find new *Lycopodium* alkaloids^{[5](#page-3-0)}, two new $C_{16}N_2$ -type alkaloids, lycopladines F (1) and G (2), were isolated from the club moss Lycopodium complanatum. In this Letter, we describe the isolation and structure elucidation of 1 and 2.

The club moss L. complanatum collected at Nayoro in Hokkaido was extracted with MeOH, and the MeOH extracts were partitioned between EtOAc and 3% aqueous tartaric acid. Water-soluble materials, adjusted at pH 9 with satd $Na₂CO₃$, were partitioned with CHCl₃. CHCl₃-soluble materials were subjected to an LH-20 column (CHCl₃/MeOH, 1:1), followed by a SiO₂ column (CHCl₃/ MeOH, $1:0\rightarrow1:1$ and then CHCl₃/MeOH/H₂O/TFA, 6:4:1:0 \rightarrow 6:4:1:0.01). The fraction eluted with $CHCl₃/MeOH/H₂O/TFA$ $(6:4:1:0.01)$ was purified by a C₁₈ HPLC (MeCN/H₂O/TFA, 14:86:0.01) to yield lycopladine F (1, 0.00016%), while a fraction eluted with CHCl₃/MeOH (100:1 and 50:1) was purified by a C_{18} HPLC (MeCN/ $H₂O/TFA$, 19:81:0.01) to give lycopladine G (2, 0.00010%).

Lycopladine F $(1)^6$ $(1)^6$ $\{[\alpha]_D^{21}$ +8 (c 0.5, MeOH)} showed the pseudomolecular ion peak at m/z 344 (M+H)⁺ in the ESIMS, and the molecular formula, $C_{20}H_{29}N_3O_2$, was established by HRESIMS $[m/z]$ 344.2331, $(M+H)^{+}$, Δ -0.7 mmu]. IR absorptions implied the presence of amino and/or hydroxy (3400 cm^{-1}) and carbonyl (1683 cm^{-1}) functionalities. ¹H and ¹³C NMR data [\(Table 1\)](#page-1-0) and the HMQC spectrum of 1 revealed 20 carbon signals due to one carbonyl carbon, three sp^2 quaternary carbons, two sp^2 methines, one $sp³$ quaternary carbon, four $sp³$ methines, eight $sp³$ methylenes, and one methyl group. Several pairs of signals were observed in ¹H NMR spectrum of **1** with a ratio of 3.5:1 [\(Table 1\)](#page-1-0), indicating that 1 was a mixture of epimeric or isomeric isomers.

The gross structure of 1 was elucidated by analyses of 2D NMR data including ¹H-¹H COSY, TOCSY, HMQC, and HMBC spectra in CD_3OD [\(Fig. 1\)](#page-1-0). ${}^{1}H-{}^{1}H$ COSY and TOCSY spectra of 1 revealed two structural units a (C-6–C-8, C-9–C-12, C-14–C-16) and b (C-17– C-19). An HMBC correlation for H-9a (δ_H 3.28) to C-13 (δ_C 62.7) suggested the connectivity from C-9 (δ C 41.9) to C-13 through a nitrogen atom. The connectivities of C-4 (δ _C 131.0), C-12 (δ _C 42.4), and C-14 (δ _C 48.2) via C-13 were elucidated by HMBC correlations for H-12 to C-13, and H-14b to C-4 and C-13. HMBC

Corresponding author. Tel.: +81 11 706 3239; fax: +81 11 706 4989. E-mail address: jkobay@pharm.hokudai.ac.jp (J. Kobayashi).

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.04.139

Table 1

¹H and ¹³C NMR Data of lycopladines F (1) and G (2) in CD₃OD^a

Position	$\mathbf{1}$		$\overline{2}$	
	$\delta_{\rm H}$	δc	$\delta_{\rm H}$	δ c
	8.59 (0.78H, s), 8.61 (0.22H, s)	149.4 d	9.07 (1H, s)	149.1 d
		132.3 s		128.5 s
$\frac{2}{3}$	8.24 (0.78H, s), 8.16 (0.22H, s)	133.8 d	8.50(1H, s)	133.6 d
		131.0 s		132.4 s
4 5		160.8 s		164.3 s
6a	3.28(1H, m)	35.2 t	3.28(1H, m)	35.8t
6b	2.82 (0.78H, 19.2 Hz), 2.83 (0.22H, d, 19.2 Hz)		2.86 (1H, d, 19.8 Hz)	
$\overline{7}$	2.35(1H, m)	33.9 d	2.34(1H, m)	34.0 d
8a	1.87(1H, m)	43.4 t	1.88(1H, m)	43.5t
8b	1.47 (1H, ddd, 13.2, 12.6, 3.6 Hz)		1.47 (1H, ddd, 12.6, 12.6, 3.6 Hz)	
9a	3.28(1H, m)	41.9t	3.21 (1H, br d, 13.2 Hz)	41.9t
9b	2.94 (1H, ddd, 13.2, 12.6, 3.6 Hz)		2.83 (1H, ddd, 13.2, 13.2, 4.2 Hz)	
10	1.88(2H, m)	23.8t	1.84(2H, m)	24.5t
11a	1.73 (1H, br d, 13.2 Hz)	25.0t	1.71 (1H, br d, 13.8 Hz)	25.4t
11 _b	1.34(1H, m)		1.29(1H, m)	
12	2.09 (1H, br d, 12.6 Hz)	42.4 d	2.05 (1H, br d, 12.6 Hz)	42.8 d
13		62.7 s		61.7 s
14a	1.89(1H, m)	48.2 t	1.83(1H, m)	48.8 t
14 _b	1.63 (1H, dd, 12.0, 12.0 Hz)		1.60 (1H, dd, 12.0, 12.0 Hz)	
15	1.23 (1H, m)	27.0 _d	1.23(1H, m)	26.9 _d
16	0.87 (2.34H, d, 6.6 Hz), 0.88 (0.66H, d, 6.6 Hz)	21.7 t	0.88 (3H, d, 6.6 Hz)	21.8t
17	4.50 (0.78H, m), 4.51 (0.22H, m)	53.8 d		198.3 s
18	2.38(2H, m)	30.4 t	3.39(2H, m)	34.6 t
19a	2.42 (1H, m)	29.8t	2.78 (2H, t, 6.0 Hz)	28.6 t
19 _b	2.36(1H, m)			
20		175.8 s		175.0 s
21			3.68 (3H, s)	52.3t

 $a¹H$ and ¹³C NMR spectra were recorded at 600 MHz and 150 MHz, respectively.

Figure 1. Selected 2D NMR correlations for lycopladine F (1).

cross-peaks of H₂-6 to C-4 (δ_c 131.0) and C-5 (δ_c 160.8) indicated the connectivity from C-6 (δ _C 35.2) to C-4. HMBC correlations observed for H-1 and H-3 to C-5, and H-3 to C-13 suggested the presence of a tri-substituted pyridine ring, which constituted a 2 substituted lycodine⁷ with unit **a**. HMBC correlations for H-3 to C-17 (δ _C 53.8), and H-17 and H-18 to C-2 (δ _C 132.3) revealed the connectivity from C-17 to C-2. An HMBC correlation for H-19b to C-20 (δ _C 175.8) indicated the connectivity of a carboxyl group to C-19 (δ_c 29.8). Finally, the molecular formula of 1 and chemical shifts of C-17 (δ_H 4.50, δ_C 53.8) suggested that the primary amino group was attached to C-17. Thus, the gross structure of lycopladine F was elucidated to be 1.

The phase-sensitive NOESY spectrum showed cross-peaks as shown in 3D drawing of 1, obtained from the molecular mechanics calculation using the MM2 force field on Chem3D Ultra (ver. 7.0.0) (Fig. 2). NOESY correlations for H-12/H-8b and H-12/H-14b revealed that a cyclohexane ring (C-7–C-8, C-12–C-15) was chair form. The methyl group at C-15 was assigned as equatorial by 3 value (12.0 Hz) between H-14b and H-15. NOESY cross-peaks of

Figure 2. Selected NOESY correlations and relative stereochemistry for C-1-C-16 moiety of lycopladine F (1).

H-3/H-9b and H-6b/H-11b suggested that a decahydro quinoline ring (C-7–C-15, N-9) was trans-fused, and the piperidine ring (C-9–C-13, N-9) and the cyclohexene ring (C-4–C-7, C-12–C-13) were chair form and half-chair form, respectively. Thus, the relative stereochemistry for C-1–C-16 moiety of lycopladine F (1) was assigned as shown in Figure 2. Since the relative stereochemistry of C-1–C-16 moiety was single, 1 was deduced to be a mixture of diastereomers at C-17.

The absolute configuration at C-17 of lycopladine F (1) was inspected by the modified Mosher's method 8 for the MTPA amides of methylester derivative of 1.^{[9](#page-3-0)} The values of $\Delta \delta$ [δ (S-MTPA amide) $-\delta(R-MTPA$ amide)] of major isomer of 1 are shown in [Figure](#page-2-0) [3](#page-2-0). The $\Delta\delta$ values for H-17, H₂-18, H₂-19, and CO₂Me of major isomer were negative, while the $\Delta\delta$ values for H-1 and H-3 were po-

Figure 3. $\Delta\delta$ values $[\Delta\delta$ (in ppm) = $\delta_S - \delta_R$] obtained for (S)- and (R)-MTPA amides of methyl ester derivative of the major isomer of lycopladine F (1).

sitive. These data suggested that the absolute configuration at C-17 of major isomer of 1 was S. The $\Delta\delta$ values for H-1, H-3, H-17, H₂-18, $H₂$ -19, and CO₂Me of minor isomer were opposite in sign to those of major isomer, suggesting that the absolute configuration at C-17 of minor isomer of 1 was R .^{[10](#page-3-0)}

Lycopladine G $(2)^{11}$ $(2)^{11}$ $(2)^{11}$ $\{[\alpha]_D^{23}$ +4 (c 0.3, MeOH)} showed the pseudomolecular ion peak at m/z 357 (M+H)⁺ in the ESIMS, and the molecular formula, $C_{21}H_{28}N_2O_3$, was established by HRE-

Figure 4. Selected 2D NMR correlations for lycopladine G (2).

SIMS $[m/z 357.2174, (M+H)^+, \Delta -0.4 \text{mmu}].$ IR absorptions implied the presence of amino (3428 cm^{-1}) , ester carbonyl (1731 cm⁻¹), and conjugated keto carbonyl (1684 cm⁻¹) functionalities. 1 H and 13 C NMR data [\(Table 1\)](#page-1-0) and the HMQC spectrum of 2 revealed 21 carbon signals due to two carbonyl carbons, three sp^2 quaternary carbons, two sp^2 methines, one $sp³$ quaternary carbon, three $sp³$ methines, eight $sp³$ methylenes, and two methyl groups.

Analyses of 2D NMR data including the 1 H $-{}^{1}$ H COSY, TOCSY, HMQC, and HMBC spectra in CD_3OD (Fig. 4) revealed that 2 possessed a 2-substituted lycodine⁷ moiety. HMBC correlations for H-3 and H-18 to C-17 (δ_C 198.3) suggested that C-18 (δ_C 34.6) was connected to C-2 (δ c 128.5) through C-17, while HMBC correlations for H-19 and H-21 to C-20 (δ C 175.0) indicated that a methoxy carbonyl group was attached to C-19. Inspection of phase-sensitive NOESY spectrum of 2 revealed that the relative stereochemistry of C-1–C-16 moiety of 2 was same as that of 1. Thus, the structure of lycopladine G (2), including relative stereochemistry, was assigned as 2.

Lycopladine F (1) is a rare $C_{16}N_2$ -type Lycopodium alkaloid possessing an amino acid residue (C_4N) . Plausible biogenetic path of 1 and 2 was proposed as shown in Scheme 1. Though the origin of γ -aminobutyric acid moiety (C₄N) attached to C-2 of 1 was unknown, it was known that the origin of pyrrolidine ring of nicotine was L-ornithine and nicotine was metabolized to γ -(3-pyridyl)- γ -methylaminobutyric acid.^{[12](#page-3-0)} Lycopladine F (1) could be derived from lycodine^{[7](#page-3-0)} and L -ornithine via hypothetical intermediate X, while lycopladine G (2) might be derived from 1 by oxidation. Biological activity of 1 and 2 is currently investigated.

Acknowledgments

The authors thank Ms. S. Oka, Center for Instrumental Analysis, Hokkaido University, for measurements of ESI. This work was partly supported by a research fellowship for young scientists from the Japan Society for the Promotion of Science (to K.I.), and a Grantin-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Scheme 1. Plausible biogenetic path of lycopladines F (1) and G (2).

References and notes

- 1. For reviews of the Lycopodium alkaloids, see: (a) Hirasawa, Y.; Kobayashi, J.; Morita, H. Heterocycles 2009, 77, 679–729; (b) Kobayashi, J.; Morita, H. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 2005; Vol. 61, pp 1–57. and references cited therein.
- 2. (a) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. 1996, 118, 1799–1800; (b) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. 1993, 115, 3020–3021.
- 3. (a) Beshore, D. C.; Smith, A. B. J. Am. Chem. Soc. 2008, 130, 13778–13789; (b) Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; Lalonde, R. L.; Toste, F. D. Angew. Chem., Int. Ed. 2006, 45, 5991–5994 and references cited therein.
- 4. Liu, J. S.; Zhu, Y. L.; Yu, C. M.; Zhou, Y. Z.; Han, Y. Y.; Wu, F. W.; Qi, B. F. Can. J. Chem. 1986, 64, 837–839.
- 5. (a) Ishiuchi, K.; Kubota, T.; Mikami, Y.; Obara, Y.; Nakahata, N.; Kobayashi, J.
.:Bioorg. Med. Chem. **2007**, 15, 413–417; (b) Ishiuchi, K.; Kubota, T.; Morita, H.;
Kobayashi, J. Tetrahedron Lett. **2006,** 47, 3287–3289
- 6. *Lycopladine F* (1): colorless amorphous solid; $[x]_D^{21}$ +8 (*c* 0.5, MeOH); IR (film) v_{max} 3400, 1683, and 1574 cm⁻¹; UV (MeOH) λ_{max} 272 nm (*e* 1600); ¹H and ¹³C

NMR data [\(Table 1](#page-1-0)); ESIMS m/z 344 (M+H)⁺; HRESIMS m/z 344.2331 (M+H; calcd for C₂₀H₃₀N₃O₂, 344.2338).

- 7. Anet, F. A. L.; Rao, M. V. Tetrahedron Lett. 1960, 1, 9-12 and references cited therein.
- 8. (a) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4096; (b) Kusumi, T.; Fukushima, T.; Ohtani, I.; Kakisawa, H. Tetrahedron Lett. 1991, 32, 2939–2942.
- 9. The methyl ester derivative of 1 was obtained by treatment of 1 with trimethyl silyl diazomethane.
- 10. The relative stereochemistry between C-1–C-16 moiety and C-17 of 1 was not elucidated.
- 11. Lycopladine G (2): colorless amorphous solid; $[\alpha]_D^{23}$ +4 (c 0.3, MeOH); IR (film) v_{max} 3428, 1731, and 1684 cm⁻¹; UV (MeOH) λ_{max} 280 nm (ε 3300); ¹H and ¹³C NMR data ([Table 1\)](#page-1-0); ESIMS *m/z* 357 (M+H)⁺; HRESIMS *m/z* 357.2174 (M+H; calcd for C₂₁H₂₉N₂O₃, 357.2178).
- 12. (a) Hashimoto, T.; Yamada, Y. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 1994, 45, 257–285; (b) McKennis, H.; Turnbull, L. B.; Bowman, E. R. J. Am. Chem. Soc. 1958, 80, 6597–6600.