Tetrahedron Letters 50 (2009) 4221-4224

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Lycopladines F and G, new $C_{16}N_2$ -type alkaloids with an additional C_4N unit from Lycopodium complanatum

Kan'ichiro Ishiuchi^a, Takaaki Kubota^a, Shigeki Hayashi^b, Toshiro Shibata^b, Jun'ichi Kobayashi^{a,*}

^a Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan ^b Hokkaido Division, Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, Nayoro 096-0065, Japan

ARTICLE INFO

Article history: Received 17 March 2009 Revised 14 April 2009 Accepted 23 April 2009 Available online 9 May 2009

Keywords: Lycopodium alkaloids Lycopodium complanatum Lycopladines F and G

ABSTRACT

Two new *Lycopodium* alkaloids, lycopladines F(1) and G(2), have been isolated from the club moss *Lycopodium complanatum*, and the structures and relative stereochemistries of 1 and 2 were elucidated on the basis of spectroscopic data. Lycopladine F(1) is a rare $C_{16}N_2$ -type *Lycopodium* alkaloid possessing an amino acid residue (C_4N).

© 2009 Elsevier Ltd. All rights reserved.

Club moss (Lycopodiaceae) is known to be a rich source of *Lycopodium* alkaloids¹ possessing unique heterocyclic ring systems such as $C_{16}N$, $C_{16}N_2$, and $C_{27}N_3$, which have attracted great interest from biogenetic², synthetic³, and biological⁴ points of view. In our continuing efforts to find new *Lycopodium* alkaloids⁵, two new $C_{16}N_2$ -type alkaloids, lycopladines F (1) and G (2), were isolated from the club moss *Lycopodium complanatum*. In this Letter, we describe the isolation and structure elucidation of 1 and 2.

The club moss *L. complanatum* collected at Nayoro in Hokkaido was extracted with MeOH, and the MeOH extracts were partitioned between EtOAc and 3% aqueous tartaric acid. Water-soluble materials, adjusted at pH 9 with satd Na₂CO₃, were partitioned

with CHCl₃. CHCl₃-soluble materials were subjected to an LH-20 column (CHCl₃/MeOH, 1:1), followed by a SiO₂ column (CHCl₃/MeOH, 1:0 \rightarrow 1:1 and then CHCl₃/MeOH/H₂O/TFA, 6:4:1:0 \rightarrow 6:4:1:0.01). The fraction eluted with CHCl₃/MeOH/H₂O/TFA (6:4:1:0.01) was purified by a C₁₈ HPLC (MeCN/H₂O/TFA, 14:86:0.01) to yield lycopladine F (**1**, 0.00016%), while a fraction eluted with CHCl₃/MeOH (100:1 and 50:1) was purified by a C₁₈ HPLC (MeCN/ H₂O/TFA, 19:81:0.01) to give lycopladine G (**2**, 0.00010%).

Lycopladine F (1)⁶ { $[\alpha]_D^{21}$ +8 (*c* 0.5, MeOH)} showed the pseudomolecular ion peak at *m*/*z* 344 (M+H)⁺ in the ESIMS, and the molecular formula, C₂₀H₂₉N₃O₂, was established by HRESIMS [*m*/*z* 344.2331, (M+H)⁺, Δ –0.7 mmu]. IR absorptions implied the presence of amino and/or hydroxy (3400 cm⁻¹) and carbonyl (1683 cm⁻¹) functionalities. ¹H and ¹³C NMR data (Table 1) and the HMQC spectrum of 1 revealed 20 carbon signals due to one carbonyl carbon, three sp² quaternary carbons, two sp² methines, one sp³ quaternary carbon, four sp³ methines, eight sp³ methylenes, and one methyl group. Several pairs of signals were observed in ¹H NMR spectrum of 1 with a ratio of 3.5:1 (Table 1), indicating that 1 was a mixture of epimeric or isomeric isomers.

The gross structure of **1** was elucidated by analyses of 2D NMR data including ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY, TOCSY, HMQC, and HMBC spectra in CD₃OD (Fig. 1). ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY and TOCSY spectra of **1** revealed two structural units **a** (C-6–C-8, C-9–C-12, C-14–C-16) and **b** (C-17–C-19). An HMBC correlation for H-9a ($\delta_{\rm H}$ 3.28) to C-13 ($\delta_{\rm C}$ 62.7) suggested the connectivity from C-9 ($\delta_{\rm C}$ 41.9) to C-13 through a nitrogen atom. The connectivities of C-4 ($\delta_{\rm C}$ 131.0), C-12 ($\delta_{\rm C}$ 42.4), and C-14 ($\delta_{\rm C}$ 48.2) via C-13 were elucidated by HMBC correlations for H-12 to C-13, and H-14b to C-4 and C-13. HMBC

^{*} Corresponding author. Tel.: +81 11 706 3239; fax: +81 11 706 4989. *E-mail address:* jkobay@pharm.hokudai.ac.jp (J. Kobayashi).

^{0040-4039/\$ -} see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.04.139

Table 1

¹H and ¹³C NMR Data of lycopladines F (1) and G (2) in CD₃OD^a

Position	1		2	
	δ_{H}	δ_{C}	$\delta_{\rm H}$	δ_{C}
1	8.59 (0.78H, s), 8.61 (0.22H, s)	149.4 d	9.07 (1H, s)	149.1 d
2	_	132.3 s		128.5 s
3	8.24 (0.78H, s), 8.16 (0.22H, s)	133.8 d	8.50 (1H, s)	133.6 d
4	_	131.0 s		132.4 s
5	-	160.8 s	_	164.3 s
6a	3.28 (1H, m)	35.2 t	3.28 (1H, m)	35.8 t
6b	2.82 (0.78H, 19.2 Hz), 2.83 (0.22H, d, 19.2 Hz)		2.86 (1H, d, 19.8 Hz)	
7	2.35 (1H, m)	33.9 d	2.34 (1H, m)	34.0 d
8a	1.87 (1H, m)	43.4 t	1.88 (1H, m)	43.5 t
8b	1.47 (1H, ddd, 13.2, 12.6, 3.6 Hz)		1.47 (1H, ddd, 12.6, 12.6, 3.6 Hz)	
9a	3.28 (1H, m)	41.9 t	3.21 (1H, br d, 13.2 Hz)	41.9 t
9b	2.94 (1H, ddd, 13.2, 12.6, 3.6 Hz)		2.83 (1H, ddd, 13.2, 13.2, 4.2 Hz)	
10	1.88 (2H, m)	23.8 t	1.84 (2H, m)	24.5 t
11a	1.73 (1H, br d, 13.2 Hz)	25.0 t	1.71 (1H, br d, 13.8 Hz)	25.4 t
11b	1.34 (1H, m)		1.29 (1H, m)	
12	2.09 (1H, br d, 12.6 Hz)	42.4 d	2.05 (1H, br d, 12.6 Hz)	42.8 d
13	_	62.7 s		61.7 s
14a	1.89 (1H, m)	48.2 t	1.83 (1H, m)	48.8 t
14b	1.63 (1H, dd, 12.0, 12.0 Hz)		1.60 (1H, dd, 12.0, 12.0 Hz)	
15	1.23 (1H, m)	27.0 d	1.23 (1H, m)	26.9 d
16	0.87 (2.34H, d, 6.6 Hz), 0.88 (0.66H, d, 6.6 Hz)	21.7 t	0.88 (3H, d, 6.6 Hz)	21.8 t
17	4.50 (0.78H, m), 4.51 (0.22H, m)	53.8 d	_	198.3 s
18	2.38 (2H, m)	30.4 t	3.39 (2H, m)	34.6 t
19a	2.42 (1H, m)	29.8 t	2.78 (2H, t, 6.0 Hz)	28.6 t
19b	2.36 (1H, m)			
20	_	175.8 s	-	175.0 s
21	-	-	3.68 (3H, s)	52.3 t

 $^{\rm a}$ $^{\rm 1}{\rm H}$ and $^{\rm 13}{\rm C}$ NMR spectra were recorded at 600 MHz and 150 MHz, respectively.

Figure 1. Selected 2D NMR correlations for lycopladine F (1).

cross-peaks of H₂-6 to C-4 (δ_C 131.0) and C-5 (δ_C 160.8) indicated the connectivity from C-6 (δ_C 35.2) to C-4. HMBC correlations observed for H-1 and H-3 to C-5, and H-3 to C-13 suggested the presence of a tri-substituted pyridine ring, which constituted a 2substituted lycodine⁷ with unit **a**. HMBC correlations for H-3 to C-17 (δ_C 53.8), and H-17 and H-18 to C-2 (δ_C 132.3) revealed the connectivity from C-17 to C-2. An HMBC correlation for H-19b to C-20 (δ_C 175.8) indicated the connectivity of a carboxyl group to C-19 (δ_C 29.8). Finally, the molecular formula of **1** and chemical shifts of C-17 (δ_H 4.50, δ_C 53.8) suggested that the primary amino group was attached to C-17. Thus, the gross structure of lycopladine F was elucidated to be **1**.

The phase-sensitive NOESY spectrum showed cross-peaks as shown in 3D drawing of **1**, obtained from the molecular mechanics calculation using the MM2 force field on Chem3D Ultra (ver. 7.0.0) (Fig. 2). NOESY correlations for H-12/H-8b and H-12/H-14b revealed that a cyclohexane ring (C-7–C-8, C-12–C-15) was chair form. The methyl group at C-15 was assigned as equatorial by ³J value (12.0 Hz) between H-14b and H-15. NOESY cross-peaks of

Figure 2. Selected NOESY correlations and relative stereochemistry for C-1–C-16 moiety of lycopladine F (1).

H-3/H-9b and H-6b/H-11b suggested that a decahydro quinoline ring (C-7–C-15, N-9) was trans-fused, and the piperidine ring (C-9–C-13, N-9) and the cyclohexene ring (C-4–C-7, C-12–C-13) were chair form and half-chair form, respectively. Thus, the relative stereochemistry for C-1–C-16 moiety of lycopladine F (1) was assigned as shown in Figure 2. Since the relative stereochemistry of C-1–C-16 moiety was single, 1 was deduced to be a mixture of diastereomers at C-17.

The absolute configuration at C-17 of lycopladine F (1) was inspected by the modified Mosher's method⁸ for the MTPA amides of methylester derivative of 1.⁹ The values of $\Delta \delta [\delta (S-MTPA ami$ $de) - \delta (R-MTPA amide)]$ of major isomer of 1 are shown in Figure 3. The $\Delta \delta$ values for H-17, H₂-18, H₂-19, and CO₂Me of major isomer were negative, while the $\Delta \delta$ values for H-1 and H-3 were po-

Figure 3. $\Delta\delta$ values [$\Delta\delta$ (in ppm) = $\delta_S - \delta_R$] obtained for (*S*)- and (*R*)-MTPA amides of methyl ester derivative of the major isomer of lycopladine F (1).

sitive. These data suggested that the absolute configuration at C-17 of major isomer of **1** was S. The $\Delta\delta$ values for H-1, H-3, H-17, H₂-18, H₂-19, and CO₂Me of minor isomer were opposite in sign to those of major isomer, suggesting that the absolute configuration at C-17 of minor isomer of **1** was R.¹⁰

Lycopladine G (**2**)¹¹ { $[\alpha]_D^{23}$ +4 (*c* 0.3, MeOH)} showed the pseudomolecular ion peak at m/z 357 (M+H)⁺ in the ESIMS, and the molecular formula, $C_{21}H_{28}N_2O_3$, was established by HRE-

Figure 4. Selected 2D NMR correlations for lycopladine G (2).

SIMS [m/z 357.2174, (M+H)⁺, Δ –0.4 mmu]. IR absorptions implied the presence of amino (3428 cm⁻¹), ester carbonyl (1731 cm⁻¹), and conjugated keto carbonyl (1684 cm⁻¹) functionalities. ¹H and ¹³C NMR data (Table 1) and the HMQC spectrum of **2** revealed 21 carbon signals due to two carbonyl carbons, three sp² quaternary carbons, two sp² methines, one sp³ quaternary carbon, three sp³ methines, eight sp³ methylenes, and two methyl groups.

Analyses of 2D NMR data including the ¹H–¹H COSY, TOCSY, HMQC, and HMBC spectra in CD₃OD (Fig. 4) revealed that **2** possessed a 2-substituted lycodine⁷ moiety. HMBC correlations for H-3 and H-18 to C-17 ($\delta_{\rm C}$ 198.3) suggested that C-18 ($\delta_{\rm C}$ 34.6) was connected to C-2 ($\delta_{\rm C}$ 128.5) through C-17, while HMBC correlations for H-19 and H-21 to C-20 ($\delta_{\rm C}$ 175.0) indicated that a methoxy carbonyl group was attached to C-19. Inspection of phase-sensitive NOESY spectrum of **2** revealed that the relative stereochemistry of C-1–C-16 moiety of **2** was same as that of **1**. Thus, the structure of lycopladine G (**2**), including relative stereochemistry, was assigned as **2**.

Lycopladine F (1) is a rare $C_{16}N_2$ -type Lycopodium alkaloid possessing an amino acid residue (C_4N). Plausible biogenetic path of 1 and 2 was proposed as shown in Scheme 1. Though the origin of γ -aminobutyric acid moiety (C_4N) attached to C-2 of 1 was unknown, it was known that the origin of pyrrolidine ring of nicotine was L-ornithine and nicotine was metabolized to γ -(3-pyridyl)- γ -methylaminobutyric acid.¹² Lycopladine F (1) could be derived from lycodine⁷ and L-ornithine via hypothetical intermediate X, while lycopladine G (2) might be derived from 1 by oxidation. Biological activity of 1 and 2 is currently investigated.

Acknowledgments

The authors thank Ms. S. Oka, Center for Instrumental Analysis, Hokkaido University, for measurements of ESI. This work was partly supported by a research fellowship for young scientists from the Japan Society for the Promotion of Science (to K.I.), and a Grantin-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Scheme 1. Plausible biogenetic path of lycopladines F (1) and G (2).

References and notes

- For reviews of the Lycopodium alkaloids, see: (a) Hirasawa, Y.; Kobayashi, J.; Morita, H. Heterocycles 2009, 77, 679–729; (b) Kobayashi, J.; Morita, H. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 2005; Vol. 61, pp 1–57. and references cited therein.
- (a) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. 1996, 118, 1799–1800; (b) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. 1993, 115, 3020–3021.
- (a) Beshore, D. C.; Smith, A. B. J. Am. Chem. Soc. 2008, 130, 13778–13789; (b) Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; Lalonde, R. L.; Toste, F. D. Angew. Chem., Int. Ed. 2006, 45, 5991–5994 and references cited therein.
- Liu, J. S.; Zhu, Y. L.; Yu, C. M.; Zhou, Y. Z.; Han, Y. Y.; Wu, F. W.; Qi, B. F. Can. J. Chem. 1986, 64, 837–839.
- 5. (a) Ishiuchi, K.; Kubota, T.; Mikami, Y.; Obara, Y.; Nakahata, N.; Kobayashi, J. Bioorg. Med. Chem. 2007, 15, 413–417; (b) Ishiuchi, K.; Kubota, T.; Morita, H.; Kobayashi, J. Tetrahedron Lett. 2006, 47, 3287–3289 and references cited therein.
- 6. Lycoplaine F (1): colorless amorphous solid; $|z|_{\text{max}}^{21}$ +8 (c 0.5, MeOH); IR (film) v_{max} 3400, 1683, and 1574 cm⁻¹; UV (MeOH) λ_{max} 272 nm (ε 1600); ¹H and ¹³C

NMR data (Table 1); ESIMS m/z 344 (M+H)⁺; HRESIMS m/z 344.2331 (M+H; calcd for C₂₀H₃₀N₃O₂, 344.2338).

- 7. Anet, F. A. L.; Rao, M. V. Tetrahedron Lett. 1960, 1, 9–12 and references cited therein.
- (a) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4096; (b) Kusumi, T.; Fukushima, T.; Ohtani, I.; Kakisawa, H. Tetrahedron Lett. 1991, 32, 2939–2942.
- 9. The methyl ester derivative of **1** was obtained by treatment of **1** with trimethyl silyl diazomethane.
- 10. The relative stereochemistry between C-1–C-16 moiety and C-17 of **1** was not elucidated.
- 11. Lycopladine G (2): colorless amorphous solid; $[\alpha]_D^{23}$ +4 (c 0.3, MeOH); IR (film) v_{max} 3428, 1731, and 1684 cm⁻¹; UV (MeOH) λ_{max} 280 nm (ϵ 3300); ¹H and ¹³C NMR data (Table 1); ESIMS m/z 357 (M+H)⁺; HRESIMS m/z 357.2174 (M+H; calcd for C₂₁H₂₉N₂O₃, 357.2178).
- (a) Hashimoto, T.; Yamada, Y. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 1994, 45, 257–285; (b) McKennis, H.; Turnbull, L. B.; Bowman, E. R. J. Am. Chem. Soc. 1958, 80, 6597–6600.